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Accurate Determination of Modes in Dielectric-
Loaded Cylindrical Cavities Using

a One-Dimensional Finite
Element Method

M. MOHAMMAD TAHERI AND D. MIRSHEKAR-SYAHKAL

Abstract —A unified approach is presented here to calculate the reso-

nant frequencies of all the modes in cylindrical cavities axisyrnmetrically

loaded with dielectrics. In this method, the radiuf variations of the field

components in the resonator are expressed in terms of first-degree finite

element polynomials while the axial variations of the field components are

approximated by trigonometric fuuctions. To calculate the resonant fre-

quencies, an H-vector vdriationaf formulation is employed and minimized

with respect to the coefficients of the expanded field components. Spuri-

ous solutions which are inherent in the finite element techuique are

effectively eliminated by means of a penalty term included in the varia-

tional expression, imposing a divergence-free magnetic field constraint. To

show the capability of the method, resonant frequencies of severaf cylindri-

cal cavities inclndisrg those loaded with dielectric rods and dielectric rings

were cafcnfated. A mode chart is afso presented which can be used for

designing certain multimode dielectric-loaded cavity filters. In contrast to

other rigorous techniques reported in the literature, the present method is

highly efficient when dielectrics are fully extended along’ the cavity length.

I. INTRODUCTION

I T IS WELL established that the design of multimode

dielectric-loaded cavity filters [1], [2] requires an accu-

rate specification of the degenerate modes of dielectric-

loaded cavity resonators. The work described in this paper

has originated from a need for a flexible but powerful

method of determining all modes in cylindrical cavities

loaded axisymrnetrically with several dielectrics (Fig. 1). A

study revealed that the existing methods of analysis of

dielectric-loaded cylindrical cavities suffer from various

shortcomings. These methods either become mathemati-

cally complex when several dielectrics are involved in the

structure of the resonator [3]–[6] or they are not applicable

to the determination of all the categories of modes (TE,

TM, and hybrids) [7], [8]. One method, reported in [9],

which can conveniently deal with all the modes is, how-

ever, found not to satisfy our requirements on the grounds

that it uses a two-dimensional finite element method;

hence it cannot be economical when dealing with di~

electrics fully extended along the cavity.

For calculating the resonant frequencies of dielectric-

loaded cavity resonators of the general configuration shown
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Fig. 1. Cross section of a cylindrical cavity resonator axisymmetrically
loaded with dielectrics.

in Fig. 1, as in [9], we started with the well-known H-vec-
tor variational expression [10]:

J.(I(v XH)E-l(V xH)*dJ
~2 =

//./

(1)

HpH* dv

where the asterisk denotes the complex conjugate, u is the

angular resonant frequency, H is the magnetic field inside

the cavity, and the integrals are performed over the volume

of the cavity. For the problems of concern, the H formula-

tion (1) is advantageous over other variational expressions

for two main reasons. First, for an arbitrary metallic

resonator the requirement of the tangential electric field is

automatically satisfied [10]. Second, since the magnetic

field is continuous at the interface of two dielectrics, no

special treatment of dielectric boundaries is necessary for

any number of dielectrics involved in the cavity.
In this paper, initially an efficient method for determin-

ing Q from (1) is described. The method is then tested by

computing the resonan~ frequencies of several dielectric-

loaded cavities for which solutions are available by other

techniques.

II. METHOD OF SOLUTION

Application of (1) requires that the magnetic field H be

expressed in terms of a set of basis functions. Since the

resonator of Fig. 1 is axisymmetrical, the variation of the
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Fig. 2. First-order finite element basis functions.

magnetic field along the 8 direction is sinusoidal [11].

Thus, components of H can be expressed as

{}

Cos(n’zo)
Hz= . f(r, z)

sm(nzd)

()

H = Cos(me)
r

sin(mfl)
g(r, z)

{}

~ = sin(rntl)
e h(r, z)

Cos(rne)

(2a)

(2b)

(2C)

where, depending on the mode, m is 0,1,2, . . . . The

functions f (r, z), g(r, z), and h (r, z) can be defined gen-

erally by many complete sets of basis functions. Since the

outer boundary is always cylindrical, an efficient represen-

tation of the magnetic field is

(3a)

(3b)

(3C)

where 1 is the cavity length. The advantage .of the above

expansions becomes conspicuous in computations where

all the dielectrics fully occupy the cavity length, in which

case they reduce to one-dimensional expansions in terms

of Nn(r).

The resonant frequencies and expansion coefficients

(A.P, Bnp, Cnp) can be obtained from a matrix equation

resulting from the application of the Rayleigh–Ritz proce-

dure to the functional defined for the problem [11]. From

the computing point of view, it is advantageous to have

sparse matrices involved in this equation. One way of

achieving this is to use a one-dimensional finite element

technique for approximating the radial behavior of the

field. The structure in the radial direction is discretized

into elements consisting of two nodes. A first-degree poly-

nomial in r with a value of 1 at the n th node and zero at

others (Fig. 2) is then associated with N.(r). This arrange-

ment not only produces sparsity in the final matrices; it

also greatly facilitates the integration task involved in (1)

when several dielectrics are contained in the resonator.

In the present variational formulation, (l), solutions

satisfy boundary conditions automatically (see Section I)

whereas they do not meet the condition v oH = O, resulting

1537

in the generation of spurious modes [9], [12], [13]. By

adding a penalty term [14] to (l), however, one can enforce

the divergence-free constraint on H. The variational ex-

pression including the penalty term is

///(
VXH)t-l(VXH)*dU+S ~/@H12du

~2 =

f.1.l
HpH* dv

(4)

where S is the penalty parameter. By assuming S = O, (4)

reduces to (l). For physical modes, v. H = O and hence

these solutions should be independent of the values of S.

When the expanded forms, (3), of the magnetic field

components are substituted into (4), the result can be

stated as

N(& B.p, Cnp,
~’ =

s)

D(& B.p. %) “

(5)

The Rayleigh-Ritz method [11], [14] can now be applied to

(5) to compute A.,, Bnp, Cnp, and o. This method gener-

ates a set of linear algebralc eigenvalue equations

[Q][x]=k2[R][x] (6)

where k 2 = ti2pOC0 and [x] is a COIUmn matrix consisting of

A Bnp, and C.P.
nP~

The matrices [Q] and [R] are very

sparse and their densities can be proved to be

(3N -2)
SQ= 3SR“ ——N 2

(7)

where N is the number of nodes and S~ and S~ are the

ratios of the number of nonzerc~ elements to the total

number of elements in the matrices [Q] and [R] respec-

tively.

111. NUMERICAL IWSULTS

The eigenvalue equation (6) has been solved by a stan-

dard subroutine [15] to obtain the eigenvalues (resonant

frequencies) and eigenvectors (field coefficients).

To check the capability of the penalty term in removing

spurious modes, we have initially computed resonant fre-

quencies of angular dependent modes (TEM.P and TM~.P)

of an empty cylindrical cavity for which analytical expres-

sions are available. For the TE modes, all three compo-

nents of the magnetic field are nonzero and hence the

maximum number of components is involved in computa-

tions. The results of the test are presented in Table I. From

this table, it is seen that as the penalty parameter S

increases, the number of spurious modes eliminated rises.

In fact, by increasing S, the spuricus solutions move down
in the spectrum of the eigenvalues. Introducing the penalty

term does, however, change the resonant frequency of

physical modes slightly [13]. Fig. 3 shows this fact for the
TEIII and TMIII modes as S incrsases. Further numerical

checks were also performed in clrder to establish confi-

dence in the accuracy of the present technique [16].
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TABLE I
THE VARIATION OF THE SPECTRUM OF MODES AS THE PENALTI

PARAMETER S INCREASES: SP INDICATES A SPUB30US MODE
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Fig. 4. Cross sections of resonators analyzed in this paper.
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Fig. 3, Typical error in the computation of the resonant frequencies of

TEI 1I and TM11 ~ modes of an empty cylindrical cavity against the
value of the penalty parameter S.

TABLE II
COMPARISON OF RESONANT FREQUENCIES (GHz) COMPUTED

BY THE PRESENT TECHNIQUE AND THOSE GIVEN IN [18]

FOR A CYLINDRICAL CAVITY LOADED WITH

A DIELECTRIC ROD

The resonator in Fig. 4(a) has wide applications in the

design of multimode filters [1], [17]. In its simplest form,

the dielectric in the resonator extends fully along the

cavity length (Fig. 4(b)). In this case, the axial function of

the field can be expressed by only one sinusoidal term in

(3). Table II compares the computed resonant frequencies
for the first four modes against the results of mode match-
ing [18] for a cylindrical cavity resonator loaded with a

dielectric rod (c, = 37.6, a = 0.394 in, b = 0.5 in). An

excellent agreement between the two techniques is evident.

For the resonator shown in Fig. 4(a) when the dielectric

is symmetrically located in the cavity (i.e., /l = Iz ), the

axial function of the field is not sinusoidal. Hence, the

number of axial terms P >1. For a specific resonator

(e, = 37.6, b/a= 1.25, a = 4 mm, l/h= 3) curves repre-

senting the convergence of the resonant frequencies of the

first three modes are computed and depicted in Fig. 5. It is

HE1ll

Refl181 Present

Tech.
2.494 2.489

2.750 2.758

3.006 3.015

3.253 3.250

3.458 3.467

3.670 3.682

3.888 3.879

4.081 4.067

*

HE ,2, TMO,l

Req18] Present RetT18] Presen
Tech. Tech.

3.820 3.813 3.363 3.380

HE2,1

(D/1)2

--P

Req18] Present
Tech.

3.391 3,402

4.078 4J240

4,246 4,237

4.395 4.389

4,6(X) 4.607

4.791 4.780

4.936 4.951

5.098 5.099

3.582 3.613

3.802 3.824

4,013 4.020

4.189 4.205

4.403 4,381

4.550 4.550

4.710 4.713

3.534 3.5413

4

5

6

7

8

9

3.715 3.742

3.930 3.961

4.118 4,135

4,313 4.330

4,463 4.491

4.622 4.(%1

For Fig. 4(b), c, = 37.6, b = 0.5 in, a = 0.394 in, and D = 2a. Note
that vahres from [18] are correct to within the readability of the

curves.
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Fig. 5. Convergence of the resonant frequencies of HEll, TMoI, and

TEOI modes of a cylindncaJ resonator loaded with a short cylindncaf

dielectric (Fig. 4(a)): c,= 37.6, I/h =3, a = 4 mm, b/u= 1.25, and
/1 = 12. In this figure P + 1 shows the number of axial terms in (3) used

in the computation.

found that in the special case of TEO., a rapid convergence

can be obtained if the E-vector variational expression

given in [10] is used (Fig. 5(c)). This effect can be at-

tributed to the fact that the basis functions employed in

the solution satisfy more Dirichlet boundary conditions

[19] than those utilized in the H-vector variational expres-

sion (4). However, for reasons described before, the E-vec-

tor variational expression is not convenient enough for the

purpose of determining the TM and hybrid modes of a

dielectric-loaded cavity. It is also found that as the ratio of

I/h increases, P should be increased in order to maintain

the accuracy of the results.

The modes in the dielectric-loaded cavities with symmet-

rical structures along the z axis (see the previous example)

can be generally grouped into two sets of modes [20]; the

modes for which the transverse electric field components

are zero at the symmetry plane, z = 1/2 (electric wall), and

those for which the transverse components of the magnetic

field vanish at the same symmetry plane (magnetic wall).

In [20], by considering the above symmetry conditions,

mathematical formulations are significantly reduced with

the consequence of saving a great deal of computer time.

In the present technique, however, there is no need to

include this symmetry condition in the formulation as the

evaluation of the integrals involved in (4) is straightfor-

ward. For a cavity resonator loaded with a dielectric disk

(Fig. 4(a)) Table III compares resonant frequencies com-

puted by the present technique with those given in [20]. To

facilitate the mode designation for cavity resonators with

dielectrics not fully occupying the length of the cavity, we

followed a mode designation similar to that given by [20].

However, since the even and odd symmetry can be auto-

matically taken care of by the present technique, we have

TABLE III
COMPARISON OF RESONANT FREQUENCIES (GHz)

COMPUTED BY THE PRESENT TECHNIQUE AND

THOSE GIVEN IN [20] FOR A CYLINDFUCAL

CAVITY LOADED WITH A DieleCtriC DISK

Mode Present Tech. Ref[20]

TEO1 3.435 3.428 (TEHO1)

TE02 5.493 5.462 (TEEOI)

TMO1 4.601 4.551 (TMEOJ

HE1l 4.271 4.224 (HEH1l)

HE12 4.373 4.326 (HEE1l)

For Fig. 4(a), c,= 35.74, h = 0.,3 in, 1= 0.6 in, a = 0.34
in, b/a =1.5, and II = 12. Note that values from [20] are
correct to within the readability of the curves.

TABLE IIT

COMPARISON OF RESONANT FREQUENCIES (GHz) CALCULATED

BY THE PRESENT TECHNIQUE AND THOSE GIVEN IN [21]–[23]

FOR TEO1 MODE (CONVENTIONALLY KNOWN AS TEO1,S )

OF SEVERAL PARALLEL-PLATE F!ESONATORS LOADED

WITH SHORT CYLINDRICAL DIELECTRIC

Dh 1,Jfl

4.06 5.15 0.568

6.03 4.16 0.820

5.98 2.95 1.360

6.02 2.14 2.070

7.99 2.14 2.070

ComplUed

tef[22] Ref[23] Present
Tech.

10.86 10.50 10.53

8.31 7.94 7.95

9.16 8.61 8.64

10.08 9.33 9.36

8.38 7.76 7.87

Measured

Ref121]

10.48

7.94

8.64

9.40

7.79

For Fig. 4(c), C, = 36.2, 11= 12. All dimensions are in mm.

omitted the even and odd subscripts from the mode desig-

nation introduced in [20]. Therefcre, the modes are defined

as TEO., TMO., and HEti,~ where the first subscript de-

notes the angular dependence of the field and the second is

the order of the resonant frequency. In the present tech-

nique, the even-mode symmetry and the odd-mode sym-

metry can be easily detected by examining the pattern of

the eigenvectors (xl.P, Bnp, Cnp). In Table IV, we have

recorded the results of the computation of the resonant

frequencies of the TEOI mode (conventionally known as

TE018) associated with several didectric resonators of dif-

ferent sizes located symmetrically between two infinite

sheets of perfect conductors (Fig. 4(c)). Theoretical and

experimental resonant frequencies of these resonators are

given in [21] -[23] and are also included in Table IV. The
agreement between the resonant frequencies computed by

the present technique and those given in [20]–[23] is excel-
lent. In the computation of the resonant frequencies pre-

sented in Table IV, we assumed that a cylindrical metallic
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TABLE V

COMPARISON OF RESONANT FREQUENCIES (GHz)

CALCULATED BY THE PRESENT TECHNIQUE AND

THOSE GIVEN IN [6] FOR A CYLINDRICAL

CAVITY LOADED WITH A DIELECTRIC RING

TABLE VI

COMPARISON OF RESONANT FREQUENCIES (GHz) COMPUTED
BY THE PRESENT TECHNIOUE AND THOSE GIVEN IN [4]

FOR A DIELECTIUC RSSONATOR LOCATED ON A

MICROSTRIP LINE SUBSTRATE

Mode Present Tech. Ref[6]

TEO1 6.64 6.64 (TEOIS)

TE02 10.49 10.50 (TEO1~

TMO1 8.42 8,38 (TMO1~

HE1l 8.86 8.79 (HE1l~

HE12 9.84 9.78 (EH1l~

For Fig. 4(d), c, = 37.5, h = 4.124 mm, 1= 6.124 mm,
d = 3.044 mm, D = 9.051 mm, b = 7.22 mm, and 11= 12.
Note that values from [6] are correct to within the
readability y of the curves.

boundary at r = 4a encloses the structure shown in Fig.

4(c). It is found that when this boundary is at this position

or further away, the calculated resonant frequencies are

hardly affected. Also note that although results by [22] are

acceptable, they are not accurate on the grounds that the

associated method of solution is approximate.

To test the generality of the present method, we have

also calculated the resonant frequencies of a cylindrical

cavity loaded with a dielectric ring (Fig. 4(d)). The reso-

nant frequencies of the first few modes are recorded in

Table V together with those reported in [6] for the same

structure. Comparing the results, excellent agreement is

evident between the two methods.

The general configuration of a dielectric resonator lo-

cated on a microstrip line substrate is shown in Fig. 4(e).

This resonator can be analyzed by the present method if it

is assumed that a cylindrical conductor encloses the struc-

ture. For a particular resonator (c, = 38, a = h = 4 mm,

11= 3 mm, 12= 0.79 mm, and ~, = 2.33), we have com-

puted the resonant frequencies of the first few modes of

the structure. In this analysis, we assumed that a cylindri-

cal metallic boundary at r = 4a encloses the structure. The

results of the computation are shown in Table VI together

with those given by [4] for comparison.

A mode chart computed by the present technique for a

cavity loaded symmetrically with a hollow cylindrical cli-

electric (c, = 37, b =18 mm, D = 20 mm, d = 5 mm) is

shown in Fig. 6.

IV. CONCLUSION

A unified technique is presented for the computation of

the resonant frequencies of all the modes in a cylindrical

cavity loaded axisymmetrically with dielectrics. The tech-

nique is based on an H-vector variational expression using

first-degree finite element basis functions to represent the

radial variation of the field components. It was shown that

spurious modes can be effectively removed from the spec-

Mode Present Tech. Ref14]

TEO1 6.82 6.73 (TE016)

TE02 10.79

TE~3 12.09 12.10 (TE~

TMO1 9.51 9.40 (TM015)

TM02 13.10

TM03 14.72 14.71 (TM~

For Fig. 4(e), t, =38, C, = 2,33, a = h =4 mm, /1 = 3

mm, and 12= 0.79 mm.

TT b=18mm
D.20mm
d.5mmr1% Sr = 37

h

,TE022

%t-jT-

~

HE,22
TE02,
TM0,2
HE221

&22!!
TM . . .

I TMO,O

I

0!75 1 1.25 1,5

D/h

Fig. 6. Mode chart for a cylindrical cawty resonator loaded with a
hollow cylindrical dlelectnc.
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trum of physical modes by adding a penalty term to the

variational expression. This penalty term imposes the con-

dition of divergence-free magnetic field. The capability of

the technique was checked by applying the technique to

various dielectric-loaded cavity resonators whose resonant

frequencies are already available in the literature. The

technique is proved to be very versatile, accurate, and

computationally efficient, particularly when dielectrics are

the same” length as the cawty. Finally, a mode chart

computed by the present teehnique is presented which can

be used in the design of certain multimode filters.
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