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Accurate Determination of Modes in Dielectric-
Loaded Cylindrical Cavities Using
a One-Dimensional Finite
Element Method

M. MOHAMMAD TAHERI anp D. MIRSHEKAR-SYAHKAL

Abstract — A unified approach is presented here to calculate the reso-
nant frequencies of all the modes in cylindrical cavities axisymmetricaily
loaded with dielectrics. In this method, the radial variations of the field
components in the resonator are expressed in terms of first-degree finite
element polynomials while the axial variations of the field components are
approximated by tngonometnc functions. To calculate the resonant fre-
quencies, an - H-vector variational formulation is employed and minimized
with respect to the coefflclents of the expanded field componenits. Spuri-
ous solutions which are inherent in the finite element technique are
effectively eliminated by means of a penalty term included in the varia-
tional expression, imposing a divergence-free magnetic field constraint. To
show the capability of the method, resonant frequencies of several cylindri-
cal cavities including those loaded with dielectric rods and dielectric rings
were calculated. A ‘mode chart is also presented which can be used for
designing certain multimode dielectric-loaded cavity filters. In contrast to
other rigorous techniques reported in the literature, the present method is
highly efficient when dielectrics are fully extended along the cavity length.

I. INTRODUCTION

T IS WELL established that the design of multimode

dielectric-loaded cavity filters [1], [2] requires an accu-
rate specification of the degenerate modes of dielectric-
loaded cavity resonators. The work described in this paper
has originated from a need for a flexible but powerful
method of determining all modes in cylindrical cavities
loaded axisymmetrically with several dielectrics (Fig. 1). A
study revealed that the existing methods of analysis of
dielectric-loaded cylindrical cavities suffer from various
shortcomings. These methods either become mathemati-
cally complex when several dielectrics are involved i in the
structure of the resonator [3]-[6] or they are not applicable
to the determination of all the categories of modes (TE,
TM, and hybrids) [7], [8]. One method, reported in [9],
which can conveniently deal with all the modes is, how-
ever, found not to satisfy our requirements on the grounds
that it uses a two-dimensional finite element method;
hence it cannot be economical when dealing with di-
electrics fully extended along the cavity.

For calculating the resonant frequencies of dielectric-
loaded cavity resonators of the gcneral configuration shown
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Fig. 1. Cross section of a cylindrical cavity resonator axisymmetrically

loaded with dielectrics.

in Fig. 1, as in [9], we started with the well-known H-vec-
tor vanational expression [10]:

/ff(v X H)e (v X H)*dy

f/ HuH* dv

where the asterisk denotes the complex conjugate, w is the
angular resonant frequency, H is the magnetic field inside
the cavity, and the integrals are performed over the volume
of the cavity. For the problems of concern, the H formula-
tion (1) is advantageous over other variational expressions
for two main reasons. First, for an arbitrary metallic
resonator the requirement of the tangential electric field is
automatically satisfied [10]. Second, since the magnetic
field is continuous at the interface of two dielectrics, no
special ‘treatment of dielectric boundaries is necessary for
any number of dielectrics involved in the cavity.

In this paper, initially an efficient method for determin-
ing @ from (1) is described. The method is then tested by
computing the resonan: frequencies of several dielectric-
loaded cavities for which solutions are avallable by other
techmques '

(1)

II. METHOD OF SOLUTION

Application of (1) requires that the magnetic field H be
expressed in terms of a set of basis functions. Since the
resonator of Fig. 1 is axisymmetrical, the variation of the
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Fig. 2. First-order finite element basis functions.

magnetic field along the @ direction is sinusoidal [11].
Thus, components of H can be expressed as

e

A P

H,= {22((:’1?) }h(r, 2) (2¢)

where, depending on the mode, m is 0,1,2,---. The
functions f(r, z), g(r, z), and h(r, z) can be defined gen-
erally by many complete sets of basis functions. Since the
outer boundary is always cylindrical, an efficient represen-
tation of the magnetic field is

(22)

(2b)

H - {Zﬁ:é::;} :i néAn,,Nn(r)sin(”T”z) (3a)

N[““

B= (SO S L BN ()eos( 2

p=0n=1
H, - { sin (m#) }
cos(mé)

where [ is the cavity length. The advantage of the above
expansions becomes conspicuous in computations where
all the dielectrics fully occupy the cavity length, in which
case they reduce to one-dimensional expansions in terms
of N, (7).

The resonant frequencies and expansion coefficients
(4,,,B,,,C,,) can be obtained from a matrix equation
resulting from the application of the Rayleigh-Ritz proce-
dure to the functional defined for the problem [11]. From
the computing point of view, it is advantageous to have
sparse matrices involved in this equation. One way of
achieving this is to use a one-dimensional finite element
technique for approximating the radial behavior of the
field. The structure in the radial direction is discretized
into elements consisting of two nodes. A first-degree poly-
nomial in r with a value of 1 at the nth node and zero at
others (Fig. 2) is then associated with N,(r). This arrange-
ment not only produces sparsity in the final matrices; it
also greatly facilitates the integration task involved in (1)
when several dielectrics are contained in the resonator.

In the present variational formulation, (1), solutions
satisfy boundary conditions automatically (see Section I)
whereas they do not meet the condition V- H = 0, resulting

) ()

L Y GM(reos( 2] (39

p=0n=1
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in the generation of spurious modes [9], [12], [13]. B
adding a penalty term [14] to (1), however, one can enforce

the divergence-free constraint on H. The variational ex-
pression including the penalty term is

fff(v X H)e Ny xH)*du+Sfff|v-H|2du

fffHuH*dv

(4)

where S is the penalty parameter. By assuming S =0, (4)
reduces to (1). For physical modes, v-H =0 and hence
these solutions should be independent of the values of S.
When the expanded forms, (3), of the magnetic field
components are substituted into (4), the result can be
stated as

e N(4,,.B,,.C,,,S)

D(4,,,B,,.C,,)

np?

(5)

The Rayleigh-Ritz method [11], [14] can now be applied to

(5) to compute 4, ,, B, ,,C,,, and w. This method gener-

ates a set of linear algebraic eigenvalue equations

[Q1[x] =&*[R][x] (6)
where k2 = w?u €, and [x] is a column matrix consisting of
4,, B,, and C,,. The matrices [Q] and [R] are very
sparse and their den51tles can be proved to be

(3N -2)
Se =38 =37 (7)

where N is the number of nodes and S, and Sy are the
ratios of the number of nonzerc elements to the total
number of elements in the matrices [Q] and [R] respec-
tively.

1. NUMERICAL RESULTS

The eigenvalue equation (6) has been solved by a stan-
dard subroutine [15] to obtain the eigenvalues (resonant
frequencies) and eigenvectors (field coefficients).

To check the capability of the penalty term in removing
spurious modes, we have initially computed resonant fre-
quencies of angular dependent modes (TE,,,,,, and TM,,, ,)
of an empty cylindrical cavity for which analytical expres-
sions are available. For the TE raodes, all three compo-
nents of the magnetic field are nonzero and hence the
maximum number of components is involved in computa-
tions. The results of the test are presented in Table I. From
this table, it is seen that as the penalty parameter S
increases, the number of spurious modes eliminated rises.
In fact, by increasing S, the spuricus solutions move down
in the spectrum of the eigenvalues. Introducing the penalty
term does, however, change the resonant frequency of
physical modes slightly [13]. Fig. 3 shows this fact for the
TE,;; and TM,;; modes as S increases. Further numerical
checks were also performed in order to establish confi-
dence in the accuracy of the present technique [16].



1538 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 37, NO. 10, OCTOBER 1989

TABLE I z 2

THE VARIATION OF THE SPECTRUM OF MODES AS THE PENALTY [e——b—» [—b—
PARAMETER S INCREASES: SP INDICATES A SPURIOUS MODE 1 | air |
1
1071%
igenvalue No.
B ° 0 356 6.22 14.1 282 50.9 678 113 339 h Sr I 1 1 I r
1 SP SP SP TEyy, TE TE\ TE TE
2 SP TE 1y, TE, SP Sp T™ 4 ™ ), ™y, N
3 SP sp SP TMy,, TM,, TEy TEg TE; + !
4 SP TMy,, TMy, TE sp SP Sp M 1, -2 -»| | r
5 SP SP TE 3 SP TEp,  TMyy  TMyy Sp r
6 S TE  SP TMg  TMuw  TEg TEy  TEn TM, —{a e
7 SP sp ™My TEyy TEyy  TMyy  TMyy, TMyy TE,
8 SP TMy  TE; Sp Sp TEq TEm  TEw TMu
9 SP Sp Sp TM 5 ™ 1y SP ™ 4y ™\ 4
10 SP TE;  TMyy  TEy  TE,  TMyy
11 sp sp 33 SP T™ 14 z
12 P T™ TE ™ 7
13 S TEw  THm “ T [e—b —*
14 PSP T
15 SP TMy | 1, ID" 1,
€ h 1
T
, P8
D 1. r h 1
0.004
1
d 1,
r
|
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/Q\ z
o
g
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. [
0.001 | 1 v
Fig. 4. Cross sections of resonators analyzed in this paper.
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Fig. 3. Typical error in the computation of the resonant frequencies of COMPARISON OF R'E,S[(;NANT FREQUENCIES (GHZ) CompUTED
TE;;; and TM,;; modes of an empty cylindrical cavity against the BY THE PRESENT TECHNIQUE AND THOSE GIVEN IN [18]
value of the penalty parameter S. FOR A CYLINDRICAL CAVITY LOADED WITH
A DIELECTRIC RoD
The resonator in Fig. 4(a) has wide applications in the HEq, HE 1 Moy HE
design of multimode filters [1], [17]. In its simplest form
& . N (1], [17] P ’ (D1)* | Ref(18] Present | Ref[18] Present | Ref[18] Present| Ref[18] Present
the dielectric in the resonator extends fully along the Tech, Tech. Tech. Tech.
cavity length (Fig. 4(b)). In this case, the axial function of 2| 2494 2489 13820 3813 3363 3380 | 3391 3402
the field can be expressed by only one sinusoidal term in 3 2750 2758 | 4.078 4040 | 3.582 3613 3.534  3.541

(3). Table II compares the computed resonant frequencies
for the first four modes against the results of mode match- ,
ing [18] for a cylindrical cavity resonator loaded with a 5 | 3253 3250 14395 4389 | 4013 4020 | 3930 3.961
dielectric rod (e, =37.6, a=0.394 in, h=0.5 in). An 6 3458 3467 | 4600 4607 | 4.189 4.205 4118 4135
excellent agreement between the two techniques is evident.

For the resonator shown in Fig. 4(a) when the dielectric ;
is symmetrically located in the cavity (ie., /,=1,), the 8 | 3888 3879 | 4936 4951 | 4550 4550 | 4463 4491
axial function of the field is not sinusoidal. Hence, the 9 4081 4.067 | 5098 5099 | 4710 4713 4622 4661
number of axial terms P >1. For a specific resonator
(¢, =376, b/a=1.25, a=4 mm, I/h=3) curves repre- For Fig. 4(b), ¢, =37.6, b=0.5 in, a = 0.394 in, and D = 2a. Note
senting the convergence of the resonant frequencies of the that values from [18] are correct to within the readability of the
first three modes are computed and depicted in Fig. 5. Itis  curves.

4 3006 3.015 4246 4237 3.802 3.824 3.715  3.742

7 3.670 3.682 | 4791 4780 | 4403 4.381 4313 4330
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Fig. 5. Convergence of the resonant frequencies of HE;;, TMy;, and
TEy; modes of a cylindrical resonator loaded with a short cylindrical
dielectric (Fig. 4(a)): €, =376, I|/h=3, a=4 mm, b/a=1.25, and
I, = 1,. In this figure P +1 shows the number of axial terms in (3) used
in the computation.

found that in the special case of TE,, a rapid convergence
can be obtained if the E-vector variational expression
given in [10] is used (Fig. 5(c)). This effect can be at-
tributed to the fact that the basis functions employed in
the solution satisfy more Dirichlet boundary conditions
[19] than those utilized in the H-vector variational expres-
sion (4). However, for reasons described before, the E-vec-
tor variational expression is not convenient enough for the
purpose of determining the TM and hybrid modes of a
dielectric-loaded cavity. It is also found that as the ratio of
I /h increases, P should be increased in order to maintain
the accuracy of the results.

The modes in the dielectric-loaded cavities with symmet-
rical structures along the z axis (see the previous example)
can be generally grouped into two sets of modes [20]; the
modes for which the transverse electric field components
are zero at the symmetry plane, z =//2 (electric wall), and
those for which the transverse components of the magnetic
field vanish at the same symmetry plane (magnetic wall).
In [20], by considering the above symmetry conditions,
mathematical formulations are significantly reduced with
the consequence of saving a great deal of computer time.
In the present technique, however, there is no need to
include this symmetry condition in the formulation as the
evaluation of the integrals involved in (4) is straightfor-
ward. For a cavity resonator loaded with a dielectric disk
(Fig. 4(a)) Table III compares resonant frequencies com-
puted by the present technique with those given in [20]. To
facilitate the mode designation for cavity resonators with
dielectrics not fully occupying the length of the cavity, we
followed a mode designation similar to that given by [20].
However, since the even and odd symmetry can be auto-
matically taken care of by the present technique, we have
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TABLE III
COMPARISON OF RESONANT FREQUENCIES (GHZ)
COMPUTED BY THE PRESENT TECHNIQUE AND
THOSE GIVEN IN [20] FOR A CYLINDRICAL
CAVITY LOADED WITH A DIELECTRIC DISK

Mode Present Tech. Ref[20]
TEq, 3435 3.428 (TEH y)
TE g 5.493 5.462 (TEE y)
™y 4.601 4.551 (TME )
HE 4271 4.224 (HEHy)
HE, 4373 4.326 (HEE\))

For Fig. 4(a), €, =35.74, h=0.3in, /= 0.6 in, a = 0.34
in, b/a=1.5, and [; =/,. Note that values from [20] are
correct to within the readability of the curves.

TABLE IV
COMPARISON OF RESONANT FREQUENCIES (GHZ) CALCULATED
BY THE PRESENT TECHNIQUE AND THOSE GIVEN IN [21]-[23]
FOR TE(; MODE (CONVENTIONALLY KNOWN AS TEq4)
OF SEVERAL PARALLEL-PLATE RESONATORS LOADED
WITH SHORT CYLINDRICAL DIELECTRIC

Computed Measured
D h 1/h [Ref[22] Ref[23] Present Ref[21}]
Tech.

406 5.15 0568 | 10.86 10.50 10.53 10.48
603 4.16 0820} 831 7.94 795 7.94
598 295 1360 9.16 8.61 8.64 8.64
602 214 2070 | 10.08 9.33 9.36 9.40
799 214 2070| 838 7.76 7.87 7.9

For Fig. 4(c), €, =36.2, [; =1,. All dimensions are in mm.

omitted the even and odd subscripts from the mode desig-
nation introduced in [20]. Therefore, the modes are defined
as TE,,, TM,,, and HE,,, where the first subscript de-
notes the angular dependence of the field and the second is
the order of the resonant frequency. In the present tech-
nique, the even-mode symmetry and the odd-mode sym-
metry can be easily detected by examining the pattern of
the eigenvectors (4,,, B,,,C,,). In Table IV, we have
recorded the results of the computation of the resonant
frequencies of the TE,; mode (conventionally known as
TE,,;) associated with several dielectric resonators of dif-
ferent sizes located symmetrically between two infinite
sheets of perfect conductors (Fig. 4(c)). Theoretical and
experimental resonant frequencies of these resonators are
given in [21]-[23] and are also included in Table 1V. The
agreement between the resonant frequencies computed by
the present technique and those given in [20]-[23] is excel-
lent. In the computation of the resonant frequencies pre-
sented in Table IV, we assumed that a cylindrical metallic
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TABLE V
COMPARISON OF RESONANT FREQUENCIES (GHZ)
CALCULATED BY THE PRESENT TECHNIQUE AND
THOSE GIVEN IN [6] FOR A CYLINDRICAL
CAviTY LOADED WITH A DIELECTRIC RING

Mode Present Tech. Ref{6]

TE o, 6.64 6.64 (TE 1)
TE 10.49 10.50 (TE o148
TMy, 8.42 8.38 (TM o15)
HE,, 8.86 8.79 (HE 15)
HE, 9.84 9.78 (EH 15)

For Fig. 4(d), ¢, =37.5, h=4.124 mm, /=6.124 mm,
d=3.044 mm, D=9.051 mm, =722 mm, and /;=1/,.
Note that values from [6] are correct to within the
readability of the curves.

boundary at r =4a encloses the structure shown in Fig.
4(c). It is found that when this boundary is at this position
or further away, the calculated resonant frequencies are
hardly affected. Also note that although results by [22] are
acceptable, they are not accurate on the grounds that the
associated method of solution is approximate.

To test the generality of the present method, we have
also calculated the resonant frequencies of a cylindrical
cavity loaded with a dielectric ring (Fig. 4(d)). The reso-
nant frequencies of the first few modes are recorded in
Table V together with those reported in [6] for the same
structure. Comparing the results, excellent agreement is
evident between the two methods.

The general configuration of a dielectric resonator lo-
cated on a microstrip line substrate is shown in Fig. 4(e).
This resonator can be analyzed by the present method if it
is assumed that a cylindrical conductor encloses the struc-
ture. For a particular resonator (¢,=38, a=h=4 mm,
l,=3 mm, /,=0.79 mm, and €, =2.33), we have com-
puted the resonant frequencies of the first few modes of
the structure. In this analysis, we assumed that a cylindri-
cal metallic boundary at r = 44 encloses the structure. The
results of the computation are shown in Table VI together
with those given by [4] for comparison.

A mode chart computed by the present technique for a
cavity loaded symmetrically with a hollow cylindrical di-
electric (¢, =37, b=18 mm, D=20 mm, d =35 mm) is
shown in Fig. 6.

1IV. CoNcLUSION

A unified technique is presented for the computation of
the resonant frequencies of all the modes in a cylindrical
cavity loaded axisymmetrically with dielectrics. The tech-
nique is based on an H-vector variational expression using
first-degree finite element basis functions to represent the
radial variation of the field components. It was shown that
spurious modes can be effectively removed from the spec-
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TABLE VI
COMPARISON OF RESONANT FREQUENCIES (GHZz) COMPUTED
BY THE PRESENT TECHNIQUE AND THOSE GIVEN IN [4]
FOR A DIELECTRIC RESONATOR LOCATED ON A
MICROSTRIP LINE SUBSTRATE

Mode Present Tech.  Ref[4]
TE,, 6.82 6.73 (TE 315)
TEqp 10.79 -
TE g 12.09 12.10 (TE i5)
™y, 9.51 9.40 (TM g15)
T™ g, 13.10 -
TM s 14.72 14.71 (TM 25)

For Fig. 4(e), ¢, =38, ¢, =233, a=h=4 mm, /=3
mm, and /, = 0.79 mm.

8
[——2b——»]
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] 1 b =18 mm
D =20 mm
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e = 37
| h
o | |||
|
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Q
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Fig. 6. Mode chart for a cylindrical cavity resonator loaded with a
holtow cylindrical dielectric.
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trum of physical modes by adding a penalty term to the
variational expression. This penalty term imposes the con-
dition of divergence-free magnetic field. The capability of
the technique was checked by applying the technique to
various dielectric-loaded cavity resonators whose resonant
frequencies are already available in the literature. The
technique is proved to be very versatile, accurate, and
computationally efficient, particularly when dielectrics are
the same length as the cavity. Finally, a mode chart
computed by the present technique is presented which can
be used in the design of certain multimode filters.
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